记者14日从西安交通大学获悉,该校物理学院和机械结构强度与振动国家重点实验室张磊教授团队与山东大学、国家蛋白质中心等单位合作,采用冷冻电镜技术在粘附类G蛋白偶联受体激活通用机制方面取得重大进展。其相关成果以《粘附GPCR ADGRG2和ADGRG4的束缚肽激活机制》为题,4月13日在国际期刊《自然》在线发表。

该联合研究团队以镍钴(NiCo)合金作为模型材料,利用脉冲电沉积工艺,在面心立方单相双主元固溶体合金中构筑出了由纳米晶粒(晶粒尺寸26纳米)及其内部多尺度成分起伏(1-10纳米)组成的复合纳米结构。制备中有意加剧的成分起伏促成了层错能和晶格应变场的明显起伏,其发生的空间尺度恰能有效地与位错交互作用,从而改变了位错动力学行为,使位错运动呈现出迟滞、间歇、缠结的特征,促使其在纳米晶粒内部有效增殖存储,提高了材料的应变硬化能力。另一方面,由于位错线不再直均匀前行,而是粘滞滑移,一段段地“纳米片段脱捕”,这一激活过程提高了位错运动的应变速率敏感,提升了应变速率硬化能力。

据张磊介绍,在应变硬化与应变速率硬化的共同作用下,该纳米合金在超高流变应力水上展现出独特的强度与塑的优化配置,达到了单相面心立方金属,也包括传统的溶剂—溶质固溶体前所未有的新高度:材料的屈服强度达到1.6GPa,最高拉伸强度接2.3GPa,拉伸断裂应变可达16%。要实现这样的强塑,过去要靠超高强钢,但后者均为复杂多相、且易发生吕德斯带形变和韧脆转变。通过选择合适的合金体系或制备工艺,这一结构-成分复合调控理念可望为新型合金材料的设计与开发开辟新的思路。(科技日报记者 史俊斌 通讯员 崔可嘉)

推荐内容